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ADDITIVELY AND MULTIPLICATIVELY
INVERSE NEAR-SEMIRINGS

P. DHEENA AND C. JENILA

ABSTRACT. It has been shown that in a near-semiring (S, +, .) with (S, +)
as an inverse semigroup, the near-semiring S is strongly regular if and only
if S is regular and reduced. In a near-semiring (S, +,.) with (S, +) as an
inverse semigroup, equivalent conditions are obtained such that (S,.) is

also an inverse semigroup.

1. INTRODUCTION

A near-semiring is a nonempty set S with two binary operations ‘+’ and
‘. such that

(1) (S,+) is a commutative semigroup with identity 0,

(2) (S,.) is a semigroup,

(3) (r+y)z =xz+yz for all z,y,z € S.

The class of near-semirings contains the class of rings and abelian near-
rings. Hence the class of near-semirings is the most generalized algebraic
structure with two binary operations. Let (I',+) be any commutative semi-
group with identity 0. If M(I") is the set of all mappings from I' into T' then
M (T") is a near-semiring under pointwise addition and composition. M (T) is
neither a ring, nor a near-ring, nor a semiring.

The semigroup/(iS, +) is an inverse semigroup if for each a € S, there
exists a unique element a’ € S such that a +ad’ +a =a and @’ +a+a’ = d'.
Then o is said to be additive inverse of a. A semiring (R, +,.) is an additive
inverse semiring if (R, +) is an inverse semigroup. A near-semiring (5, +,.) is
an additive inverse near-semiring if (S, +) is an inverse semigroup.

Bandelt and Petrich [2] have studied additive inverse semiring with the
conditions a(a+a’) = a+d, a(b+V') = (b+V)a and a+a(b+b') = a. Sen and
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Maity [9] have obtained equivalent conditions for an additive inverse semiring
to be regular. In this paper we extend these results to near-semirings. We have
obtained equivalent conditions for an additive inverse near-semiring (S, +,.)

such that the semigroup (S, .) is also an inverse semigroup.

2. STRONGLY REGULAR ADDITIVELY INVERSE NEAR-SEMIRINGS
Lemma 2.1. Forz,y€ S, x = (2'), (v +y) =2' + v and (zy) = 2'y.

Proof: Straightforward.

If S is an additive inverse semiring then (zy) = 2’y = zy’ and xy = 2'y’.
We have ET(S) = {a € Sla+a=a} and E*(S) = {e € Sle.e = e}.

Bandelt, Petrich [2] and Sen, Maity [9] have studied additive inverse semir-
ing that satisfies the following conditions:

(1) ala+d)=a+d

(2) ab+V)=(b+V)a

(3) a+aldb+¥)=a.

Throughout this paper we assume that additive inverse near-semiring satis-
fies a(b+b") = (b+b')a. We call such an additive inverse near-semiring as idem-
potent commuting additive inverse near-semiring. Rings and zero-symmetric
near-rings are natural examples of these types of near-semirings. A nonempty
subset I of S such that a+b € I for all a,b € [ is said to be invariant subnear-
semiring if IS C I and ST C I.

Lemma 2.2. E1(S) is an invariant subnear-semiring of an idempotent com-

muting additive inverse near-semiring S.

Proof: Let a,b € ET(S). Then clearly a + b € ET(S). Let s € S. Now
as + as = (a + a)s = as. Therefore as € E1(S). Since a € E1(S) and
inverse of any additive idempotent element is itself, we have a = a'. Now
sa=s(a+a) =s(a+d)=(a+a)s=as+as=as+ase ET(S).

Sen and Maity [9] studied additively inverse semirings and derived equiva-
lent conditions for an additive inverse semiring to be regular. Now we introduce

strongly regular additive inverse near-semirings and characterize them.
Definition 2.1. A near-semiring S is said to be reduced if for every a € S,
a" € EY(S) implies a € E*(S) for any positive integer n.

Definition 2.2. A near-semiring S is said to be regular if for each a € S there

exists an element x € S such that a = axa.

Definition 2.3. A near-semiring S is said to be strongly regular if for each

a € S there exists an element x € S such that a = za?.



ADDITIVELY AND MULTIPLICATIVELY INVERSE NEAR-SEMIRINGS 49

Lemma 2.3. Let S be a reduced idempotent commuting additive inverse near-
semiring. Then for any a,b € S, ab € ET(S) implies ba € E*(S)and asb €
E*(S) for every s € S.

Proof: Let ab € E*(S). Now (ba)? = baba € E*(S). Thus ba € ET(S). Also
(asb)? = asbasb € ET(S), showing that asb € ET(S).

Lemma 2.4. Let S be an additive inverse near-semiring and a,b € S. If
a+V e EY(S)anda+a =b+ b, then a=b.

Proof: Let a,b € S. Now
a+b' = (a+b)+(a+V) =a+b/+b+ad = a+a’ +b+b =b+b'+b+b = b+¥.
Thus a+b +b=b+b +b=0>. Henceb=a+b' +b=a+d +a=a.

Lemma 2.5. Let S be a reduced idempotent commuting additive inverse near-

semiring. For any a,b € S and for any e € E*(S), abe = aeb.

Proof: Let e € E*(S). Then for any a,b € S,
(a+ (ae))e = ae + (ae)'e = ae + (ace) = ae + (ae)’ € ET(S).
Since S is reduced, abe + (aebe) € ET(S). Now
abe + (abe) = (ab + (ab))e = e(ab + a’b)e = e(a + a')be = aebe + (aebe)’.
Therefore by Lemma 2.4, abe = aebe. Also
(eb+ (ebe)')e = ebe + (ebe)’ € ET(S).
Hence eb(eb+ (ebe)’) € ET(S) and (ebe) (eb+ (ebe)’) € ET(S). Thus
(eb+ (ebe)')? € ET(S). Since S is reduced, eb + (ebe) € ET(S).Now

eb+ (eb) = eeb + (eeb)’ = eecb+€'eb' = (e + €' )eb

=e(e+ €' )b=e(eb+(eb)) = (eb+ (eb))e = ebe + (ebe)’,

showing that ebe = eb. Thus abe = aeb.
Note: If S is a reduced idempotent commuting additive inverse near-semiring
with identity then the idempotents are central.

Lemma 2.5 does not hold for additive inverse near-semiring which does not
satisfy the condition a(b+ V') = (b+ b')a, as the following example shows.

Example 2.1. Let I' = {0, 1} in which ‘+’ is defined by
+(10 1
010 1
111 1
Now TI' is an additive inverse commutative semigroup. Let M (T") = {0,a,b,1}

where 0,a,b,1 are all maps from I' to I'. Now M (I") is an additive inverse

near-semiring under pointwise addition and composition and we have
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+10 a b 1 0 a b 1
010 a b 1 00 0 0 O
ala a b b alb 1 0 a
b|b b b b bl/b b b b
111 b b 1 110 a b 1

Clearly M(I') is reduced. Here b is an idempotent with aab # aba, since
0=ab+b)#(b+V)a=0b.

Example 2.2. Let I' be any additive inverse commutative semigroup with
0. (Let T' be as in Example 2.1. Now I' x Z is an infinite additive inverse
commutative semigroup). Let So(T') = {f: T — T'|f(0) = 0} and let

SOT) = {fi+ fo+ . + fulfi € So(T) and fi(g+9g) = (9 + g )fi for all
g € Sp(I)}. Then SM(T) is an additive inverse near-semiring under pointwise
addition and composition. Clearly S()(T) is neither a ring, nor a near-ring,
nor a semiring. But S((I') is only an additive inverse near<semiring with
a(b+ ) = (b+b)a for all a,b € SH(T).

Theorem 2.1. An idempotent commuting additive inverse mear-semiring S is

strongly reqular if and only if it is reqular and reduced.

Proof: Let S be strongly regular and a € S-be such that a®> € ET(S). Now
there exists x € S such that a = za? € ET(S). Hence S is reduced.

Let us show that S is regular. Let'@ € S. Then a = za? for some z € S.
Hence (a + (aza)')a = a® + a'za® =.a* +a'a = a® + (a®)’ € ET(9). Since S is
reduced, a(a + (aza)’) € E1(S). Since (a + axa’)a € EY(S), (a + aza’)a'za €
E*(S). Hence (a+aza’)(ara) € ET(S) and hence (axa)' (a+(axa)') € ET(S).

Now
(a + (aza) )= (a + (axa))(a + (aza)’)
='a(a+ (aza)') + (aza)'(a + (aza)’) € ET(S9).

Hence a + (aza) € E*(S). Now

a+d = xa® + (za®) = za® + (za)'a = (zva + (za))a = (za + (za) )za®

= 2(za + (za)")a® = z(za® + (za®)")a = (a + d')zra = azxa + (aza)’.

Hence a = axa showing that S is regular.

Conversely let us assume that S is regular and reduced. Let a € S. Then
a = aya for some y € S. Clearly ya is an idempotent. Hence by Lemma 2.5,
we have a = aya = ayaya = ayyaa = ay’a® = xa?, where x = ay?®. Thus S is

strongly regular.
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Theorem 2.2. An idempotent commuting additive inverse near-semiring S is
strongly regular if and only if given a € S there exists x € S such that a = axa

and axr = za.

Proof: Assume that S is strongly regular. Let a € S, such that a = za?, for
some x € S. By Theorem 2.1, a = aza. Now (az + (za)')a = a + (za®) = a+
a’ € ET(S). Since S is reduced, az(az+ (za)') € ET(S). Since (ax+ (za) )a €
ET(S), (ax + (za)")z'a € ET(S). Therefore (azx + (za)')(za)’ € ET(S) and
hence (za)'(ax + (za)’) € ET(S). Thus (ax + (za)’)? € E*(S) and hence
(ax + (za)') € ET(S). Also
az + (az) = (a + a')z = (za® + (za®))z = (za + (va) )az

= a(za + (za) )z = a(zaz + (vazx) ) = (vax + (zaz) )a = za + (za)'.
Therefore ax = xza. The converse is immediate.

Corollary 2.1. ([8], Theorem 9.158) Let N # {0} be a regular mear-ring with
identity. The following statements are equivalent.
(1) N = Ny has no non-zero nilpotent elements.

(2) All idempotents of N are central.

Proof: If N is a near-ring, then ET(N) = 0.

3. MULTIPLICATIVELY INVERSE NEAR-SEMIRINGS

Definition 3.1. An element a € S is a-weak idempotent if a®> = a+y for some
y € ET(S). The set of weak idempotents of S is denoted by E*(S).

If a € (S,+,.) is an idempotent then a is a weak idempotent.

Now we give an example of a‘weak idempotent element which is not an
idempotent.

Following Alarcon and Polkowska [1], we have the following definition for
B(n, i) semirings without zero. Let n > 2 and 1 <i < n and m =n —i. Let
B(n, i) be the following semirings. B(n,i) = {1,2,...,n—1} and the operations
in B(n,1i) are:

r+yifr+y<n—1
T+BmaY =4 lifxe+y>n
withl =2z +ymodmand i<l <n-—1.

zyifoy <n-—1

T.pmpy =4 liftzy>n
with [ = xy mod m and i <[ <n — 1.
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Example 3.1. Consider the semiring B(4,3) = {1,2,3} where ‘+’ and ‘.” are
defined as follows:

+l1 2 3 |12 s
112 5 3 11 2 3
213 3 3 212 3 3
313 3 3 313 3 3

Here 2 is a weak idempotent but not an idempotent, since 2.2 = 2 + 3 for
3€ Et(B(4,3)) but 2.2 =3 # 2.

Definition 3.2. A near-semiring (S, +,.) is a multiplicative inverse near-

semiring if (S,.) is an inverse semigroup.

Definition 3.3. Let (S,+,.) be a near-semiring. Let a € S. If there exists a
unique = € S such that axa = a+y; and zax = x+ys for some y;;y2 € ET(S)

then x is called a multiplicative weak inverse of a.

If every element a € S has multiplicative weak inverse then (S, +,.) is
called multiplicative weak inverse near-semiring. Multiplicative weak inverse

a’ of a weak idempotent a is a itself.

Remark 3.1. If (S, +,.) is a multiplicative inverse near-semiring then it is a

multiplicative weak inverse near-semiring: But the converse is not true.

Now we give an example of an element which has multiplicative weak in-

verse but does not have a multiplicative inverse.

Example 3.2. Consider the near-semiring (5, +,.) where ‘+’ and ‘.” are de-

fined as follows:

+10 a b ¢ d .10 a b ¢ d
010 a b c d o110 0 0 0 0
ala a a a a al0 a a a a
blb a b d d bl0 a b b d
cl|lc a d c d c|0 a b b d
d|ld a d d d dl0 a b b d

Here ¢ has a multiplicative weak inverse a, since cac = c+a and aca = a+a
for a € ET(S). But ¢ does not have a multiplicative inverse.
Hereafter we assume that for any a,b € S, y € E*(S), a(b+y) = ab+ ay.
Clearly zero-symmetric near-rings, semirings and rings satisfy this condition.

Lemma 3.1. If S is a multiplicative weak inverse near-semiring then for any

e,f € E*S), ef = fe.
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Proof: Let e? = e+1y; and f2 = f +yso for some y1,y2 € ET(S). Let = be the
multiplicative weak inverse of ef. Then ef(z)ef = ef +ys and x(ef)xr = x+ya
for some y3,y4 € E1(S).
(fze)? = flzefr)e = f(z+ya)e = f(ze +yae) = fre+ fyse = fre+ys
for some y5 € E1(S). Hence fxe is a weak idempotent.

We have
ef(fre)ef = effwetf = e(f +ya)ale + y1)f = ef + yo for some ys € E*(S).
fre(ef)fre = fre?f?ze = fa(e +y1)(f + y2)re = fxe + y7 for some y; €
ET(S). Thus fxe = ef. Therefore ef is a weak idempotent.
Similarly fe is also a weak idempotent.
Now ef(fe)ef = ef2ef =e(f +y2)(e +y1)f = efef +ys = ef + yo for some
Ys, Yo € E1(9).
fe(ef)fe= fe*f?e = fle+y)(f +y2)e = fe(f +y2)e + y10 = fefe+yn =
fe+y12 for some y10,y11,y12 € ET(S).
Thus fe is the multiplicative weak inverse of ef.

Since ef is the multiplicative weak inverse of the weak idempotent ef, we
have ef = fe.

Definition 3.4. The invariant subnear-semiring E*(S) is k-invariant if a+y
and y € E1(S) imply a € E*(9).

Theorem 3.1. Let S be a multiplicative weak inverse near-semiring such that
ET(S) is k-invariant. For any a € S, a®> € E™(S) implies a € ET(S) .

Proof: Let b be the multiplicative weak inverse of a. Thus aba = a+y; and
bab = b + yo for some y1,y2 € ET(S). Thus ab and ba are weak idempotents.
Hence by Lemma 3.1, ab®a = abba. = baab € E*(S).

Now

a(ba(ba +b))a =aba(ba + b)a = (a + y1)(ba® + ba)

= a(ba® + ba) + y3 = aba + ys = a + ys

for some y3,y4,y5 € ET(9).
Now
(ba(ba + b))a(ba(ba + b)) = ba(ba + b)(a + y1)(ba + b) = ba(ba + b)a(ba + b) + ys

= ba(ba® + ba)(ba + b) + ys = (ba + y7)(ba + b) + ye
= ba(ba +b) + ys

for some yg, y7,ys € ET(9).
By uniqueness, ba(ba + b) = b
Now babba = bbaab = b*a*b € ET(S). Then
babba = (b + y2)ba = b%a + y2ba € ET(S). Since y2ba € ET(S), b*a € ET(S).
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Now
ab*a = abba = aba(ba + b)ba = (a + y1)(ba + yo + ba)

= aba + ab’a +y10 = a +y1 + ab’a + yi0 = a + yn1

for some yg, y10,y11 € ET(S). Since ab’*a € ET(S),a € ET(S).

Theorem 3.2. Let (S,+,.) be an idempotent commuting additive inverse near-
semiring with ET(S) as k-invariant. Then the following are equivalent:

(1) (S,.) is an inverse semigroup.

(2) (S,.) is regular and idempotents in E*(S) are central.

(3) (S,.) is regular and aS = Sa for every a € S.

Proof: (1) = (2) Clearly (S,.) is regular. Let a € S and e € E®(S) and
a = aba for some b € S. Let ab = f. Then a = fa. By Theorem 3.1, S is
reduced. By Lemma 2.5, ae = fae = fea = efa = ea.

(2) = (3) Let @ € S and let a = azxa for some z € S. For any s € S,
as = azxas = asra € Sa. Thus aS C Sa. Similarly Sa C aS. Thus a5 = Sa.
(3) = (1) Let e, f € E*(S). Now eS = Se. Hence there exists x,y € S such
that fe = ex and ef = ye. Hence efe = eex = ex'= fe and efe = yee = ye =
ef. Therefore ef = fe. By Theorem 1.17 [3],(S,.) is an inverse semigroup.

Corollary 3.1. ([7], Theoreml)If (N,+,.)4s a near-ring then the following
are equivalent:

(1) (N,.) is an inverse semigroup.

(2) (N,.) is regular and idempotents are central.

(3) (N,.) is reqular and Na =.aN for every a € N.

Proof: If (N, +,.) is a near-ring then clearly ET(N) = {0} is k-invariant and
a(b+y) =ab+ ay for all a;b'e N and y € ET(N).
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